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Summary. Catacondensed monoheptafusenes consist of catafusenes annelated to a heptagon. 
Complete mathematical solutions are reported for the numbers of these systems. Two methods were 
applied: combinatorial summations and application of generating functions. Catacondensed mono- 
heptabenzenoids (geometrically planar catacondensed monoheptafusenes) were enumerated by 
computer programming, and the numbers of catacondensed monoheptahelicenes (the corresponding 
geometrically nonplanar systems) were obtained as differences. Some of the forms of these helicenes 
are depicted. 
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Eine polycyelisehe konjugierte Kohlenwasserstoffe darstellende Klasse polygonaler 
Kohlenwasserstoffe: katakondensierte Monoheptafusene. 

Zusammenfassung. Katakondensierte Monoheptafusene bestehen aus Katafusenen, welche zu einem 
Heptagon verkniipft sind. Ffir die Zahlen der m6glichen derartigen Verkntipfungen werden 
geschlossene mathematische Ausdriicke abgeleitet. Zwei Methoden wurden angewendet: (1) das direkte 
Aufsummieren der kombinatorischen Ausdriicke und (2) Summenbildung mit Hilfe yon erzeugenden 
Funktionen. Katakondensierte Monoheptabenzenoide, darunter versteht man katakondensierte 
Monoheptafusene mit planarer Geometric, wurden mittels Computersimulation abgez/ihlt und die 
Zahl der katakondensierten Monoheptahelicene-dies sind die nicht planaren katakondensierten 
Monoheptafusene-wurden durch Differenzbildung erhalten. Einige ausgew/ihlte Geometrien von 
Helicenen werden gezeigt und diskutiert. 

Introduction 

In a previous work [1] some classes of polycyclic conjugated hydrocarbons with 
six-membered and seven-membered rings are treated. As chemical graphs [2] they 
are represented by polygonal systems consisting of hexagons and heptagons. In 
particular, a monoheptapolyhex [1], which is a mono-q-polyhex [3, 4] with q = 7, 
consists of exactly one heptagon and otherwise hexagons (if any). Also the classes of 
monoheptabenzenoids and monoheptahelicenes, which together form the class of 
monoheptafusenes, are defined in the previous work [1] (but see also below). 
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A catafusene [-5-7] is a catacondensed fusene [-8], viz. a catacondensed simply 
connected polyhex [-9]. In a paper by Harary and Read [,10], the catafusenes were 
successfully enumerated according to their numbers of hexagons. A complete 
mathematical solution was achieved and expressed in terms of a complicated 
generating function. The catafusenes are divided into catabenzenoids and cataheli- 
cenes according to: 

~benzenoid 
fusene ~.helicene 

Extensive enumeration works on catabenzenoids (catacondensed benzenoids) 
started some time ago [,11-13]. Later works in this area are reviewed elsewhere [9]. 
Also the numbers of catahelicenes (catacondensed helicenes) have been considered 
separately [-9, 13]. 

The present work on catacondensed monoheptafusenes is parallel to the above 
description for catafusenes with respect to the main lines. However, a classification 
of the deduced numbers according to symmetry is undertaken. The corresponding 
classification for catafusenes [,14-16] was not achieved before twenty years after the 
appearance of the pioneering paper by Harary and Read [,10]. In addition, the 
present work takes advantage of the method of combinatorial summations [-14, 15, 
17], which is an alternative to the application of generating functions, but the 
generating functions are also employed. In particular, a complicated expression of 
the Harary-Read type [,10] is deduced for the total numbers of catacondensed 
monoheptafusenes. 

Results and Discussion 

Basic Concepts 

In a polygonal system, any two polygons should either share exactly one edge or be 
disjointed. A simply connected polygonal system has no holes (like e.9. the coronoids 
[,18]). An internal vertex of a polygonal system is a vertex shared by three polygons. 
Catacondensed systems have no internal vertices. After these preparations, a 
monoheptafusene is characterized precisely as a simply connected monohepta- 
polyhex (see above). One has the classification: 

~monoheptabenzenoid 
monoheptafusene {monoheptahelicene 

A monoheptabenzenoid (like a benzenoid [9]) should be geometrically planar 
(non=helicenic), i.e. there should be no overlapping edges when the system is 
embedded in a monoheptahexagonal lattice [3] (analoguously to the hexagonal 
lattice of benzenoids). A monoheptahelicene (like a helicene [9]) is geometrically 
nonplanar (helicenic). 

When helicenic systems are classified into symmetry groups, the nonplanarity is 
not taken into account. For instance, all the normal (h) helicenes [19] correspond 
to systems of the symmetry C2v (see Fig. 1, where the dualists [-5, 6, 20] are employed 
as a convenient representation; in a dualist, each vertex represents a polygon). 

Denote a catacondensed monoheptafusene by F 7. It may be the heptagon alone. 
Otherwise F 7 consists of e appendages which are catafusenes and annelated to the 
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Fig. 1. The dualists of(9)helicene and (14)helicene. The top row 
shows the usual representation, while the bottom row is a 
modification which complies with the symmetry group C2v 

heptagon. Here a = 1, 2 or 3. The h number of hexagons of F 7 are distributed over 
the appendages. Apart from the case of h = 0 (the heptagon itself), associated with 
the symmetry Dvh, only two symmetry groups are possible, viz. C2v and Cs. 

Two quantities are crucial in the present theory. Firstly, the numbers .N h of 
edge-rooted catafusenes with h hexagons are obtained by a recursive algorithm [1], 
which can be expressed in the compact  form [14, 15, 17]. 

h - 1  

N I = I ,  N 2 = 3 N l = 3 ,  Nh+l=3Nh + ~ N iNh_ i (h>l  ) 1 
i = l  

Secondly, the numbers Mh of the edge-rooted catafusenes with mirror symmetry 
[17] are 

[ ( h -  1)/21 

M 1 = 1, M h = ~ Ni(h > 1) 2 
i = 0  

The generating functions for N h and M h are known. Firstly [10], 

1 x - 1 U(x) = 2., Nh xh ----- - [1 -- 3X -- (1 -- x)l/z(1 - 5 x )  1 / 2 ]  

h = l  2 

= x + 3x 2 + 10x a + 36x 4 + 137x s + 543x 6 

+ 2219x 7 + 9285x 8 + 39587x 9 + 171369x 1° + . . .  3 

Secondly [21], 

oo 

V ( x )  = = x(1 -  )-111 + U(x2)] 
h =  1 

1 
----- - - X  - 1 [ 1  -[- X - -  ( 1  - -  X ) -  1(1 - -  X2)I/2(1 - -  5 X 2 )  1 / 2 ]  

2 

~ -  X .qt- X 2 -t- 2X 3 -I- 2X 4 + 5X 5 + 5 X  6 -~ 15X 7 + 15x 8 + 51X 9 + 51x TM + . . .  4 

In addition, we shall need the numbers [17] 

t(h - 1)/21 

M'h= Z NiMh -2i(h>2) 5 
i = 1  

The corresponding generating function is 

U (x2) W(x) ~- ~ i ' h  x h = (1 - x)-  1 I X -  1(1 - -  2x2)U (x 2) -- X] 
h = 3  
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1 
= - x -  3[(1 + x)(1 - 4x 2) - (1 - x)-  1(1 - -  2x2)(1 - x2)1/2(1 - 5xZ) 1/2] 

2 

= X 3 + X 4 + 5 X  5 ~- 5 X  6 --[- 21x v + 21x s + 86x 9 + 86x 1° + . . .  6 

Catacondensed Monoheptafusenes 

In the following, complete mathemat ica l  solutions are repor ted for the enumera t ion  
of the title systems. 

Annelation Schemes 

F o u r  schemes of annela t ion  for the Fv systems are i l lustrated in Fig. 2. The number  
of nonisomorphic  systems under  a given scheme is "F. These numbers  are functions 
of h. Notice tha t  there are two schemes with a = 2, which are associated with the 
same function (2F) .  The total  number  of non isomorph ic  F7 systems is 

F 7 = 1F + 2 x ( 2 F )  + 3F (h > 0) 7 

In addit ion,  

F 7 = 1 for h = 0, 

which accounts  for the hexagon alone. 

Crude Totals 

The quanti t ies referred to as crude totals [17], say ~Jh, are the numbers  of noniso-  
morphic  systems for a scheme with a appendages  if no symmet ry  is present. It has 
been found [17] (for h > 0): 

1J h = N h 9 

2Jh = Nh+ 1 -- 3Nh 10 

3Jh = Nh+2--6Nh+l  + 8Nh 11 

The generat ing functions for "Jh are simple: 

~J(x) = ~ (~Jh)X h= U~(x) 12 
h = l  

The following explicit expressions and numerical  values were found for a = 2 and  3: 

= ~ X - 2 [ 1  - -  6x + 7x 2 - -  (1 - 3x)(1 - x)l/z(1 - 2J(x) 5x) 1/2] 

~--- X 2 ~" 6X 3 + 2 9 x  4 + 132X 5 + 5 9 0 X  6 -t- 2628X 7 

+ 11732X s + 52608x 9 + 237129X 1° + . . .  13 

Fig. 2. Schemes of annelation for cata- 
condensed monoheptafusenes (F~). 
The asterisks indicate the sites of 
annelation 
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1 x 3J(x)  = ~ -3[-(1 -- 3x)(1 - 6x + 6x 2) - (1 - 2x)(l -- 4x)(1 - x)1/2(1 - 5x) 1/2] 

= x 3 + 9x 4 + 57x 5 + 315x 6 + 1629x 7 + 8127x s + 39718x 9 + 191754x t° + . . .  

14 

One Appendage 

The crude total 1J h (for c~ = 1) counts the M mirror-symmetrical (Czv) systems once 
and the A unsymmetrical (Cs) systems twice: 

1J h = M + 2A 15 

where 

M = Mh 16 

as given in Eq. 2. The 1F number of F7 systems is 

1 F = M + A  

On eliminating A from 15 and 17, one finds 

11 
1F = -_( Jh + M)  

2 

and consequently 

1 
~ F = _ (Nh + Mh) (h > O) 

2 

17 

18 

19 

Two Appendages 

In a similar way as above, one has for ~ = 2: 

2J h = M + 2A 20 

where, for the sake of simplicity, the same symbols M and A are applied as in Eq. 
15 although they are different functions of h. In the present case, 

M = N h / 2  21 

where Nh/2 is supposed to have nonvanishing values only when h is divisible by two. 
Furthermore,  

2F = M + A 22 

whereupon one finds the final expression 

1 
2F = ~(Nh+ 1 -- 3Nh + Nh/2) (h > 0) 23 

Three Appendages 

Finally, for ~ = 3 one has 

3 f f  h = M n t" 2 A  24 
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where 

As before,  

and  finally: 

! 

M = M h 25 

3F = M + A 26 

1 
3F = ~(Nh+ 2 -- 6Nh+ 1 + 8N h + M'h)(h > O) 27 

Total  Numbers  and Symmetry  

The  quant i t ies  1F, 2 x (2F), and 3F are given numer ica l ly  in Table  1 toge ther  with 
their  sums which, in consis tency with Eq. 7, yields the total  number s  of  F 7 systems. 
The  algebraic  express ion for this total  was found  to be 

1 
F 7 = ~(Uh+ 2 -- 4Nh+ a d- 3N h + M h -at- 2Nh/2 -b M'h) (h > 0) 28 

The  da ta  for 1 ~< h ~< 10 are comple ted  by the relevant  entries for h = 0 (c~ = 0) in 
Table  1. 

The  above expressions give the numbers  of mir ror-symmetr ica l  (C2v)F 7 systems as 

M 7 = M h q- 2Nh/2 q- M '  h (h > 0) 29 

The  genera t ing  funct ion for M h -F M '  say W(x), is ob ta ined  f rom Eqs. 3, 4 and  h' 
6 as 

W(x)  = V(x) + U(x2)V(x) -- x 1(1 + x )U(x  2) 

1 
= - X -  3(1 q- X)[1 -- 3X 2 -- (1 -- X2)1/2(1 - -  5X2) 1/2] 30 

2 

Table 1. Numbers of nonisomorphic catacondensed monoheptafusenes classified ac- 
cording to the numbers of appendages 

h 0 1 2 3 Total 

0 1 0 0 0 1 
1 0 1 0 0 1 
2 0 2 2 0 4 
3 0 6 6 1 13 
4 0 19 32 5 56 
5 0 71 132 31 234 
6 0 274 600 160 1034 
7 0 1117 2628 825 4570 
8 0 4650 11768 4074 20492 
9 0 19819 52608 19902 92329 

10 0 85710 237266 95920 418896 
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if we write 

it becomes apparent that 

W(x) = (1 -~- x - 1 ) U ( x 2 ) ,  

M h + M'  h = N~h/2 ~ (h > O) 

1333 

31 

32 

which yields a simplification of 29 as: 

M7 = Nrh/21 + 2Nh/z (h > 0) 33 

Herefrom, the generating function for M7 is readily obtained: 

m T ( x  ) = W(x) + 2U(x 2) = x -  1(1 + 3x)U(x 2) 

1 
= - X -  3(1 + 3x)[1 - 3x z - (1 - x2)1/2(1 - 5 x 2 )  1/2]  34 

2 

The numerical values of M v are entered in the column under C2v in Table 2. In 
the above deductions, no expressions were derived explicitly for the unsymmetrical 
(Cs) systems. However, the numerical values (see Table 2) are readily obtained by 
subtractions from the totals (Table 1). Table 2 is supplemented by the appropriate 
entries which pertain to the heptagon alone (h = 0). 

A good check on the numbers of Table 2 is an overall crude total: 

J7  = 1Jh 4:- 2 x (zJh) + 3J  h = Nh+ 2 -- 4Nh+ 1 + 3Nh (h > 0) 35 

This quantity c'ounts the C2v systems once and the C~ systems twice. 
Finally, the generating function for the F 7 numbers of nonisomorphic Fv systems 

in total is reported: 

F T ( X )  = ] -I- l [ u ( x )  -t - V ( x ) ] - t -  U 2 ( x )  -I - U ( x 2 ) - j r l [ u 3 ( x ) - I  - U(x2) V(x)] 
2 2 

Table 2. Numbers ofnonisomorphiccatacondensed monoheptafusenes classi- 

fied according to symmetry 

h Dvh C2v Cs Total* 

0 1 0 0 1 

1 0 1 0 1 
2 0 3 1 4 

3 0 3 10 13 

4 0 9 47 56 

5 0 10 224 234 

6 0 30 1004 1034 

7 0 36 4534 4570 

8 0 108 20384 20492 

9 0 137 92192 92329 

10 0 411 418485 418896 

* see also Table 1 



1334 B.N. Cyvin et al. 

1 
= - x - 3  [2(1 - 2x + 5 x  2 - 6x 3) - (1 - x)(1 - 3x)(1 - x)l/2(1 - 5x) 1/2 

4 

-- (1 + 3x)(1 -- x2)1/2(1 - -  5 X 2 ) 1 / 2 ~  36 

The  uni ty  was added  in o rder  to accoun t  for the hep tagon  alone. 

Catacondensed Monoheptabenzenoids 

N o  mathemat i ca l  solut ion is expected to be found  for the en u m era t i o n  of the title 
systems. As in the case of  (ca tacondensed)  benzenoids ,  it was resor ted  to numer ica l  
solut ions by c o m p u t e r  p rogramming .  The  previous  work  on  m o n o h e p t a b e n z e n o i d s  
[1] conta ins  the enumera t i on  results for the ca t acondensed  systems up to h = 7. In 
Table  3 this mater ia l  is ex tended to h = 8. 

Catacondensed Monoheptahelicenes 

The  numbers  of  monohep tahe l i cenes  which are displayed in Table  4 were ob ta ined  
on  subt rac t ing  the numbers  of  Table  3 f rom the co r re spond ing  ones of  Table  2. This  
step implies subt rac t ions  between large numbers ,  and  therefore  it is essential tha t  
these number s  are exact. The  correctness  of the present  analysis can be c o r r o b o r a t e d  
by an independen t  genera t ion  of some of  the monoheptahe l icenes .  

Table 3. Numbers of nonisomorphic catacondensed monoheptabenzenoids 
classified according to symmetry 

h DTh C2v Cs Total 

0 1 0 0 1 
1 0 1 0 1 
2 0 3 1 4 
3 0 3 10 13 
4 0 9 47 56 
5 0 10 221 231 
6 0 29 970 999 
7 0 35 4241 4276 
8 0 99 18294 18393 

Table 4. Numbers of nonisomorphic catacondensed 
monoheptahelicenes classified according to symmetry 

h C2~ C~ Total 

5 0 3 3 
6 1 34 35 
7 1 293 294 
8 9 2090 2099 
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Fig. 3. Distorted trigonal lattice for representations of mono- 
heptafusenes as dualists 

I 1 2 

2 ~ 1 2 1 1 1 

3 2 2 

Fig. 4. The 3Cs catacondensed monoheptaheli- 
cenes with h = 5. The numerials indicate anne- 
lations of hexagons 

Fig. 5. The unique C2~ catacondensed 
monoheptahelicene with h = 6 and 7 of the 
relevant Cs systems (out of 34) 

Fig. 6. The unique C2~ catacondensed monoheptahelicene with h = 7 

Catafusenes and especially catahelicenes are conveniently represented by dualists 
as in Fig. 1. These constructions can be embedded in a regular trigonal lattice. This 
representation was adopted to monoheptafusenes by introducing a distorted 
trigonal lattice ("spider web"; Fig. 3). 

A systematic method for generations of helicenes was developed by Guo et al. 

[22]. Their approach was adapted to catacondensed monoheptahelicenes with the 
results depicted in Figs. 4-7. Herein the black dots indicate hexagons, while the 
heptagon in each system is identified by a white dot. Fig. 4, where the numerals 
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/5 

(5 Fig. 7. The 9Czv catacondensed monoheptaheli- 
cenes with h = 8 

should be disregarded for a moment ,  shows the smallest (h = 5) 3Cs nonisomorphic  
catacondensed monoheptahelicenes.  In Fig. 5, 1Czv (marked by an arrow head) and 
7Cs systems with h = 6 and of the category under  consideration are depicted. 
Addit ional  27C~ systems are obtained on annelating one hexagon at a time to the 
systems of Fig. 4 according to the numerals  therein. For  the larger catacondensed 
monoheptahel icenes we were content  with the generation of some of the smallest 
symmetrical (C2~) systems only: 1Czv for h = 7 (Fig. 6) and 9C2v for h = 8 (Fig. 7). 
All these findings are in perfect agreement with the numbers  of Table 4. 
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